Struct statrs::distribution::Pareto[][src]

pub struct Pareto { /* fields omitted */ }

Implements the Pareto distribution

Examples

use statrs::distribution::{Pareto, Continuous};
use statrs::statistics::Mean;
use statrs::prec;

let p = Pareto::new(1.0, 2.0).unwrap();
assert_eq!(p.mean(), 2.0);
assert!(prec::almost_eq(p.pdf(2.0), 0.25, 1e-15));

Implementations

impl Pareto[src]

pub fn new(scale: f64, shape: f64) -> Result<Pareto>[src]

Constructs a new Pareto distribution with scale scale, and shape shape.

Errors

Returns an error if any of scale or shape are NaN. Returns an error if scale <= 0.0 or shape <= 0.0

Examples

use statrs::distribution::Pareto;

let mut result = Pareto::new(1.0, 2.0);
assert!(result.is_ok());

result = Pareto::new(0.0, 0.0);
assert!(result.is_err());

pub fn scale(&self) -> f64[src]

Returns the scale of the Pareto distribution

Examples

use statrs::distribution::Pareto;

let n = Pareto::new(1.0, 2.0).unwrap();
assert_eq!(n.scale(), 1.0);

pub fn shape(&self) -> f64[src]

Returns the shape of the Pareto distribution

Examples

use statrs::distribution::Pareto;

let n = Pareto::new(1.0, 2.0).unwrap();
assert_eq!(n.shape(), 2.0);

Trait Implementations

impl CheckedSkewness<f64> for Pareto[src]

fn checked_skewness(&self) -> Result<f64>[src]

Returns the skewness of the Pareto distribution

Errors

If α <= 3.0

where α is the shape

Formula

    (2*(α + 1)/(α - 3))*sqrt((α - 2)/α)

where α is the shape

impl Clone for Pareto[src]

impl Continuous<f64, f64> for Pareto[src]

fn pdf(&self, x: f64) -> f64[src]

Calculates the probability density function for the Pareto distribution at x

Formula

if x < x_m {
    0
} else {
    (α * x_m^α)/(x^(α + 1))
}

where x_m is the scale and α is the shape

fn ln_pdf(&self, x: f64) -> f64[src]

Calculates the log probability density function for the Pareto distribution at x

Formula

if x < x_m {
    -INF
} else {
    ln(α) + α*ln(x_m) - (α + 1)*ln(x)
}

where x_m is the scale and α is the shape

impl Copy for Pareto[src]

impl Debug for Pareto[src]

impl Distribution<f64> for Pareto[src]

impl Entropy<f64> for Pareto[src]

fn entropy(&self) -> f64[src]

Returns the entropy for the Pareto distribution

Formula

ln(α/x_m) - 1/α - 1

where x_m is the scale and α is the shape

impl Max<f64> for Pareto[src]

fn max(&self) -> f64[src]

Returns the maximum value in the domain of the Pareto distribution representable by a double precision float

Formula

INF

impl Mean<f64> for Pareto[src]

fn mean(&self) -> f64[src]

Returns the mean of the Pareto distribution

Formula

if α <= 1 {
    INF
} else {
    (α * x_m)/(α - 1)
}

where x_m is the scale and α is the shape

impl Median<f64> for Pareto[src]

fn median(&self) -> f64[src]

Returns the median of the Pareto distribution

Formula

x_m*2^(1/α)

where x_m is the scale and α is the shape

impl Min<f64> for Pareto[src]

fn min(&self) -> f64[src]

Returns the minimum value in the domain of the Pareto distribution representable by a double precision float

Formula

x_m

where x_m is the scale

impl Mode<f64> for Pareto[src]

fn mode(&self) -> f64[src]

Returns the mode of the Pareto distribution

Formula

x_m

where x_m is the scale

impl PartialEq<Pareto> for Pareto[src]

impl Skewness<f64> for Pareto[src]

fn skewness(&self) -> f64[src]

Returns the skewness of the Pareto distribution

Panics

If α <= 3.0

where α is the shape

Formula

    (2*(α + 1)/(α - 3))*sqrt((α - 2)/α)

where α is the shape

impl StructuralPartialEq for Pareto[src]

impl Univariate<f64, f64> for Pareto[src]

fn cdf(&self, x: f64) -> f64[src]

Calculates the cumulative distribution function for the Pareto distribution at x

Formula

if x < x_m {
    0
} else {
    1 - (x_m/x)^α
}

where x_m is the scale and α is the shape

impl Variance<f64> for Pareto[src]

fn variance(&self) -> f64[src]

Returns the variance of the Pareto distribution

Formula

if α <= 2 {
    INF
} else {
    (x_m/(α - 1))^2 * (α/(α - 2))
}

where x_m is the scale and α is the shape

fn std_dev(&self) -> f64[src]

Returns the standard deviation of the Pareto distribution

Formula

let variance = if α <= 2 {
    INF
} else {
    (x_m/(α - 1))^2 * (α/(α - 2))
};
sqrt(variance)

where x_m is the scale and α is the shape

Auto Trait Implementations

impl RefUnwindSafe for Pareto

impl Send for Pareto

impl Sync for Pareto

impl Unpin for Pareto

impl UnwindSafe for Pareto

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]