Struct statrs::distribution::Pareto [−][src]
Implements the Pareto distribution
Examples
use statrs::distribution::{Pareto, Continuous}; use statrs::statistics::Mean; use statrs::prec; let p = Pareto::new(1.0, 2.0).unwrap(); assert_eq!(p.mean(), 2.0); assert!(prec::almost_eq(p.pdf(2.0), 0.25, 1e-15));
Implementations
impl Pareto
[src]
pub fn new(scale: f64, shape: f64) -> Result<Pareto>
[src]
Constructs a new Pareto distribution with scale scale
, and shape
shape.
Errors
Returns an error if any of scale
or shape
are NaN
.
Returns an error if scale <= 0.0
or shape <= 0.0
Examples
use statrs::distribution::Pareto; let mut result = Pareto::new(1.0, 2.0); assert!(result.is_ok()); result = Pareto::new(0.0, 0.0); assert!(result.is_err());
pub fn scale(&self) -> f64
[src]
Returns the scale of the Pareto distribution
Examples
use statrs::distribution::Pareto; let n = Pareto::new(1.0, 2.0).unwrap(); assert_eq!(n.scale(), 1.0);
pub fn shape(&self) -> f64
[src]
Returns the shape of the Pareto distribution
Examples
use statrs::distribution::Pareto; let n = Pareto::new(1.0, 2.0).unwrap(); assert_eq!(n.shape(), 2.0);
Trait Implementations
impl CheckedSkewness<f64> for Pareto
[src]
fn checked_skewness(&self) -> Result<f64>
[src]
impl Clone for Pareto
[src]
impl Continuous<f64, f64> for Pareto
[src]
fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the Pareto distribution
at x
Formula
if x < x_m { 0 } else { (α * x_m^α)/(x^(α + 1)) }
where x_m
is the scale and α
is the shape
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the Pareto
distribution at x
Formula
if x < x_m { -INF } else { ln(α) + α*ln(x_m) - (α + 1)*ln(x) }
where x_m
is the scale and α
is the shape
impl Copy for Pareto
[src]
impl Debug for Pareto
[src]
impl Distribution<f64> for Pareto
[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl Entropy<f64> for Pareto
[src]
fn entropy(&self) -> f64
[src]
Returns the entropy for the Pareto distribution
Formula
ln(α/x_m) - 1/α - 1
where x_m
is the scale and α
is the shape
impl Max<f64> for Pareto
[src]
fn max(&self) -> f64
[src]
Returns the maximum value in the domain of the Pareto distribution representable by a double precision float
Formula
INF
impl Mean<f64> for Pareto
[src]
fn mean(&self) -> f64
[src]
Returns the mean of the Pareto distribution
Formula
if α <= 1 { INF } else { (α * x_m)/(α - 1) }
where x_m
is the scale and α
is the shape
impl Median<f64> for Pareto
[src]
fn median(&self) -> f64
[src]
Returns the median of the Pareto distribution
Formula
x_m*2^(1/α)
where x_m
is the scale and α
is the shape
impl Min<f64> for Pareto
[src]
fn min(&self) -> f64
[src]
Returns the minimum value in the domain of the Pareto distribution representable by a double precision float
Formula
x_m
where x_m
is the scale
impl Mode<f64> for Pareto
[src]
impl PartialEq<Pareto> for Pareto
[src]
impl Skewness<f64> for Pareto
[src]
impl StructuralPartialEq for Pareto
[src]
impl Univariate<f64, f64> for Pareto
[src]
fn cdf(&self, x: f64) -> f64
[src]
Calculates the cumulative distribution function for the Pareto
distribution at x
Formula
if x < x_m { 0 } else { 1 - (x_m/x)^α }
where x_m
is the scale and α
is the shape
impl Variance<f64> for Pareto
[src]
fn variance(&self) -> f64
[src]
Returns the variance of the Pareto distribution
Formula
if α <= 2 { INF } else { (x_m/(α - 1))^2 * (α/(α - 2)) }
where x_m
is the scale and α
is the shape
fn std_dev(&self) -> f64
[src]
Returns the standard deviation of the Pareto distribution
Formula
let variance = if α <= 2 { INF } else { (x_m/(α - 1))^2 * (α/(α - 2)) }; sqrt(variance)
where x_m
is the scale and α
is the shape
Auto Trait Implementations
impl RefUnwindSafe for Pareto
impl Send for Pareto
impl Sync for Pareto
impl Unpin for Pareto
impl UnwindSafe for Pareto
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,