1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
use core::iter::FromIterator;
use core::ops::{Deref, RangeBounds};
use core::{cmp, fmt, hash, mem, ptr, slice, usize};

use alloc::{borrow::Borrow, boxed::Box, string::String, vec::Vec};

use crate::buf::IntoIter;
#[allow(unused)]
use crate::loom::sync::atomic::AtomicMut;
use crate::loom::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use crate::Buf;

/// A reference counted contiguous slice of memory.
///
/// `Bytes` is an efficient container for storing and operating on contiguous
/// slices of memory. It is intended for use primarily in networking code, but
/// could have applications elsewhere as well.
///
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
/// `Bytes` objects to point to the same underlying memory. This is managed by
/// using a reference count to track when the memory is no longer needed and can
/// be freed.
///
/// ```
/// use bytes::Bytes;
///
/// let mut mem = Bytes::from("Hello world");
/// let a = mem.slice(0..5);
///
/// assert_eq!(a, "Hello");
///
/// let b = mem.split_to(6);
///
/// assert_eq!(mem, "world");
/// assert_eq!(b, "Hello ");
/// ```
///
/// # Memory layout
///
/// The `Bytes` struct itself is fairly small, limited to 4 `usize` fields used
/// to track information about which segment of the underlying memory the
/// `Bytes` handle has access to.
///
/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory
/// slice and a pointer to the start of the region visible by the handle.
/// `Bytes` also tracks the length of its view into the memory.
///
/// # Sharing
///
/// The memory itself is reference counted, and multiple `Bytes` objects may
/// point to the same region. Each `Bytes` handle point to different sections within
/// the memory region, and `Bytes` handle may or may not have overlapping views
/// into the memory.
///
///
/// ```text
///
///    Arc ptrs                   +---------+
///    ________________________ / | Bytes 2 |
///   /                           +---------+
///  /          +-----------+     |         |
/// |_________/ |  Bytes 1  |     |         |
/// |           +-----------+     |         |
/// |           |           | ___/ data     | tail
/// |      data |      tail |/              |
/// v           v           v               v
/// +-----+---------------------------------+-----+
/// | Arc |     |           |               |     |
/// +-----+---------------------------------+-----+
/// ```
pub struct Bytes {
    ptr: *const u8,
    len: usize,
    // inlined "trait object"
    data: AtomicPtr<()>,
    vtable: &'static Vtable,
}

pub(crate) struct Vtable {
    /// fn(data, ptr, len)
    pub clone: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Bytes,
    /// fn(data, ptr, len)
    pub drop: unsafe fn(&mut AtomicPtr<()>, *const u8, usize),
}

impl Bytes {
    /// Creates a new empty `Bytes`.
    ///
    /// This will not allocate and the returned `Bytes` handle will be empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let b = Bytes::new();
    /// assert_eq!(&b[..], b"");
    /// ```
    #[inline]
    #[cfg(not(all(loom, test)))]
    pub const fn new() -> Bytes {
        // Make it a named const to work around
        // "unsizing casts are not allowed in const fn"
        const EMPTY: &[u8] = &[];
        Bytes::from_static(EMPTY)
    }

    #[cfg(all(loom, test))]
    pub fn new() -> Bytes {
        const EMPTY: &[u8] = &[];
        Bytes::from_static(EMPTY)
    }

    /// Creates a new `Bytes` from a static slice.
    ///
    /// The returned `Bytes` will point directly to the static slice. There is
    /// no allocating or copying.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let b = Bytes::from_static(b"hello");
    /// assert_eq!(&b[..], b"hello");
    /// ```
    #[inline]
    #[cfg(not(all(loom, test)))]
    pub const fn from_static(bytes: &'static [u8]) -> Bytes {
        Bytes {
            ptr: bytes.as_ptr(),
            len: bytes.len(),
            data: AtomicPtr::new(ptr::null_mut()),
            vtable: &STATIC_VTABLE,
        }
    }

    #[cfg(all(loom, test))]
    pub fn from_static(bytes: &'static [u8]) -> Bytes {
        Bytes {
            ptr: bytes.as_ptr(),
            len: bytes.len(),
            data: AtomicPtr::new(ptr::null_mut()),
            vtable: &STATIC_VTABLE,
        }
    }

    /// Returns the number of bytes contained in this `Bytes`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let b = Bytes::from(&b"hello"[..]);
    /// assert_eq!(b.len(), 5);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true if the `Bytes` has a length of 0.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let b = Bytes::new();
    /// assert!(b.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    ///Creates `Bytes` instance from slice, by copying it.
    pub fn copy_from_slice(data: &[u8]) -> Self {
        data.to_vec().into()
    }

    /// Returns a slice of self for the provided range.
    ///
    /// This will increment the reference count for the underlying memory and
    /// return a new `Bytes` handle set to the slice.
    ///
    /// This operation is `O(1)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let a = Bytes::from(&b"hello world"[..]);
    /// let b = a.slice(2..5);
    ///
    /// assert_eq!(&b[..], b"llo");
    /// ```
    ///
    /// # Panics
    ///
    /// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
    /// will panic.
    pub fn slice(&self, range: impl RangeBounds<usize>) -> Bytes {
        use core::ops::Bound;

        let len = self.len();

        let begin = match range.start_bound() {
            Bound::Included(&n) => n,
            Bound::Excluded(&n) => n + 1,
            Bound::Unbounded => 0,
        };

        let end = match range.end_bound() {
            Bound::Included(&n) => n + 1,
            Bound::Excluded(&n) => n,
            Bound::Unbounded => len,
        };

        assert!(
            begin <= end,
            "range start must not be greater than end: {:?} <= {:?}",
            begin,
            end,
        );
        assert!(
            end <= len,
            "range end out of bounds: {:?} <= {:?}",
            end,
            len,
        );

        if end == begin {
            return Bytes::new();
        }

        let mut ret = self.clone();

        ret.len = end - begin;
        ret.ptr = unsafe { ret.ptr.offset(begin as isize) };

        ret
    }

    /// Returns a slice of self that is equivalent to the given `subset`.
    ///
    /// When processing a `Bytes` buffer with other tools, one often gets a
    /// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
    /// This function turns that `&[u8]` into another `Bytes`, as if one had
    /// called `self.slice()` with the offsets that correspond to `subset`.
    ///
    /// This operation is `O(1)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let bytes = Bytes::from(&b"012345678"[..]);
    /// let as_slice = bytes.as_ref();
    /// let subset = &as_slice[2..6];
    /// let subslice = bytes.slice_ref(&subset);
    /// assert_eq!(&subslice[..], b"2345");
    /// ```
    ///
    /// # Panics
    ///
    /// Requires that the given `sub` slice is in fact contained within the
    /// `Bytes` buffer; otherwise this function will panic.
    pub fn slice_ref(&self, subset: &[u8]) -> Bytes {
        // Empty slice and empty Bytes may have their pointers reset
        // so explicitly allow empty slice to be a subslice of any slice.
        if subset.is_empty() {
            return Bytes::new();
        }

        let bytes_p = self.as_ptr() as usize;
        let bytes_len = self.len();

        let sub_p = subset.as_ptr() as usize;
        let sub_len = subset.len();

        assert!(
            sub_p >= bytes_p,
            "subset pointer ({:p}) is smaller than self pointer ({:p})",
            sub_p as *const u8,
            bytes_p as *const u8,
        );
        assert!(
            sub_p + sub_len <= bytes_p + bytes_len,
            "subset is out of bounds: self = ({:p}, {}), subset = ({:p}, {})",
            bytes_p as *const u8,
            bytes_len,
            sub_p as *const u8,
            sub_len,
        );

        let sub_offset = sub_p - bytes_p;

        self.slice(sub_offset..(sub_offset + sub_len))
    }

    /// Splits the bytes into two at the given index.
    ///
    /// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
    /// contains elements `[at, len)`.
    ///
    /// This is an `O(1)` operation that just increases the reference count and
    /// sets a few indices.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let mut a = Bytes::from(&b"hello world"[..]);
    /// let b = a.split_off(5);
    ///
    /// assert_eq!(&a[..], b"hello");
    /// assert_eq!(&b[..], b" world");
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if `at > len`.
    #[must_use = "consider Bytes::truncate if you don't need the other half"]
    pub fn split_off(&mut self, at: usize) -> Bytes {
        assert!(
            at <= self.len(),
            "split_off out of bounds: {:?} <= {:?}",
            at,
            self.len(),
        );

        if at == self.len() {
            return Bytes::new();
        }

        if at == 0 {
            return mem::replace(self, Bytes::new());
        }

        let mut ret = self.clone();

        self.len = at;

        unsafe { ret.inc_start(at) };

        ret
    }

    /// Splits the bytes into two at the given index.
    ///
    /// Afterwards `self` contains elements `[at, len)`, and the returned
    /// `Bytes` contains elements `[0, at)`.
    ///
    /// This is an `O(1)` operation that just increases the reference count and
    /// sets a few indices.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let mut a = Bytes::from(&b"hello world"[..]);
    /// let b = a.split_to(5);
    ///
    /// assert_eq!(&a[..], b" world");
    /// assert_eq!(&b[..], b"hello");
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if `at > len`.
    #[must_use = "consider Bytes::advance if you don't need the other half"]
    pub fn split_to(&mut self, at: usize) -> Bytes {
        assert!(
            at <= self.len(),
            "split_to out of bounds: {:?} <= {:?}",
            at,
            self.len(),
        );

        if at == self.len() {
            return mem::replace(self, Bytes::new());
        }

        if at == 0 {
            return Bytes::new();
        }

        let mut ret = self.clone();

        unsafe { self.inc_start(at) };

        ret.len = at;
        ret
    }

    /// Shortens the buffer, keeping the first `len` bytes and dropping the
    /// rest.
    ///
    /// If `len` is greater than the buffer's current length, this has no
    /// effect.
    ///
    /// The [`split_off`] method can emulate `truncate`, but this causes the
    /// excess bytes to be returned instead of dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let mut buf = Bytes::from(&b"hello world"[..]);
    /// buf.truncate(5);
    /// assert_eq!(buf, b"hello"[..]);
    /// ```
    ///
    /// [`split_off`]: #method.split_off
    #[inline]
    pub fn truncate(&mut self, len: usize) {
        if len < self.len {
            // The Vec "promotable" vtables do not store the capacity,
            // so we cannot truncate while using this repr. We *have* to
            // promote using `split_off` so the capacity can be stored.
            if self.vtable as *const Vtable == &PROMOTABLE_EVEN_VTABLE
                || self.vtable as *const Vtable == &PROMOTABLE_ODD_VTABLE
            {
                drop(self.split_off(len));
            } else {
                self.len = len;
            }
        }
    }

    /// Clears the buffer, removing all data.
    ///
    /// # Examples
    ///
    /// ```
    /// use bytes::Bytes;
    ///
    /// let mut buf = Bytes::from(&b"hello world"[..]);
    /// buf.clear();
    /// assert!(buf.is_empty());
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    #[inline]
    pub(crate) unsafe fn with_vtable(
        ptr: *const u8,
        len: usize,
        data: AtomicPtr<()>,
        vtable: &'static Vtable,
    ) -> Bytes {
        Bytes {
            ptr,
            len,
            data,
            vtable,
        }
    }

    // private

    #[inline]
    fn as_slice(&self) -> &[u8] {
        unsafe { slice::from_raw_parts(self.ptr, self.len) }
    }

    #[inline]
    unsafe fn inc_start(&mut self, by: usize) {
        // should already be asserted, but debug assert for tests
        debug_assert!(self.len >= by, "internal: inc_start out of bounds");
        self.len -= by;
        self.ptr = self.ptr.offset(by as isize);
    }
}

// Vtable must enforce this behavior
unsafe impl Send for Bytes {}
unsafe impl Sync for Bytes {}

impl Drop for Bytes {
    #[inline]
    fn drop(&mut self) {
        unsafe { (self.vtable.drop)(&mut self.data, self.ptr, self.len) }
    }
}

impl Clone for Bytes {
    #[inline]
    fn clone(&self) -> Bytes {
        unsafe { (self.vtable.clone)(&self.data, self.ptr, self.len) }
    }
}

impl Buf for Bytes {
    #[inline]
    fn remaining(&self) -> usize {
        self.len()
    }

    #[inline]
    fn bytes(&self) -> &[u8] {
        self.as_slice()
    }

    #[inline]
    fn advance(&mut self, cnt: usize) {
        assert!(
            cnt <= self.len(),
            "cannot advance past `remaining`: {:?} <= {:?}",
            cnt,
            self.len(),
        );

        unsafe {
            self.inc_start(cnt);
        }
    }

    fn to_bytes(&mut self) -> crate::Bytes {
        core::mem::replace(self, Bytes::new())
    }
}

impl Deref for Bytes {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.as_slice()
    }
}

impl AsRef<[u8]> for Bytes {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.as_slice()
    }
}

impl hash::Hash for Bytes {
    fn hash<H>(&self, state: &mut H)
    where
        H: hash::Hasher,
    {
        self.as_slice().hash(state);
    }
}

impl Borrow<[u8]> for Bytes {
    fn borrow(&self) -> &[u8] {
        self.as_slice()
    }
}

impl IntoIterator for Bytes {
    type Item = u8;
    type IntoIter = IntoIter<Bytes>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self)
    }
}

impl<'a> IntoIterator for &'a Bytes {
    type Item = &'a u8;
    type IntoIter = core::slice::Iter<'a, u8>;

    fn into_iter(self) -> Self::IntoIter {
        self.as_slice().into_iter()
    }
}

impl FromIterator<u8> for Bytes {
    fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
        Vec::from_iter(into_iter).into()
    }
}

// impl Eq

impl PartialEq for Bytes {
    fn eq(&self, other: &Bytes) -> bool {
        self.as_slice() == other.as_slice()
    }
}

impl PartialOrd for Bytes {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(other.as_slice())
    }
}

impl Ord for Bytes {
    fn cmp(&self, other: &Bytes) -> cmp::Ordering {
        self.as_slice().cmp(other.as_slice())
    }
}

impl Eq for Bytes {}

impl PartialEq<[u8]> for Bytes {
    fn eq(&self, other: &[u8]) -> bool {
        self.as_slice() == other
    }
}

impl PartialOrd<[u8]> for Bytes {
    fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(other)
    }
}

impl PartialEq<Bytes> for [u8] {
    fn eq(&self, other: &Bytes) -> bool {
        *other == *self
    }
}

impl PartialOrd<Bytes> for [u8] {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
    }
}

impl PartialEq<str> for Bytes {
    fn eq(&self, other: &str) -> bool {
        self.as_slice() == other.as_bytes()
    }
}

impl PartialOrd<str> for Bytes {
    fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(other.as_bytes())
    }
}

impl PartialEq<Bytes> for str {
    fn eq(&self, other: &Bytes) -> bool {
        *other == *self
    }
}

impl PartialOrd<Bytes> for str {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
    }
}

impl PartialEq<Vec<u8>> for Bytes {
    fn eq(&self, other: &Vec<u8>) -> bool {
        *self == &other[..]
    }
}

impl PartialOrd<Vec<u8>> for Bytes {
    fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(&other[..])
    }
}

impl PartialEq<Bytes> for Vec<u8> {
    fn eq(&self, other: &Bytes) -> bool {
        *other == *self
    }
}

impl PartialOrd<Bytes> for Vec<u8> {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
    }
}

impl PartialEq<String> for Bytes {
    fn eq(&self, other: &String) -> bool {
        *self == &other[..]
    }
}

impl PartialOrd<String> for Bytes {
    fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
        self.as_slice().partial_cmp(other.as_bytes())
    }
}

impl PartialEq<Bytes> for String {
    fn eq(&self, other: &Bytes) -> bool {
        *other == *self
    }
}

impl PartialOrd<Bytes> for String {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
    }
}

impl PartialEq<Bytes> for &[u8] {
    fn eq(&self, other: &Bytes) -> bool {
        *other == *self
    }
}

impl PartialOrd<Bytes> for &[u8] {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
    }
}

impl PartialEq<Bytes> for &str {
    fn eq(&self, other: &Bytes) -> bool {
        *other == *self
    }
}

impl PartialOrd<Bytes> for &str {
    fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
    }
}

impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
where
    Bytes: PartialEq<T>,
{
    fn eq(&self, other: &&'a T) -> bool {
        *self == **other
    }
}

impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
where
    Bytes: PartialOrd<T>,
{
    fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
        self.partial_cmp(&**other)
    }
}

// impl From

impl Default for Bytes {
    #[inline]
    fn default() -> Bytes {
        Bytes::new()
    }
}

impl From<&'static [u8]> for Bytes {
    fn from(slice: &'static [u8]) -> Bytes {
        Bytes::from_static(slice)
    }
}

impl From<&'static str> for Bytes {
    fn from(slice: &'static str) -> Bytes {
        Bytes::from_static(slice.as_bytes())
    }
}

impl From<Vec<u8>> for Bytes {
    fn from(vec: Vec<u8>) -> Bytes {
        // into_boxed_slice doesn't return a heap allocation for empty vectors,
        // so the pointer isn't aligned enough for the KIND_VEC stashing to
        // work.
        if vec.is_empty() {
            return Bytes::new();
        }

        let slice = vec.into_boxed_slice();
        let len = slice.len();
        let ptr = slice.as_ptr();
        drop(Box::into_raw(slice));

        if ptr as usize & 0x1 == 0 {
            let data = ptr as usize | KIND_VEC;
            Bytes {
                ptr,
                len,
                data: AtomicPtr::new(data as *mut _),
                vtable: &PROMOTABLE_EVEN_VTABLE,
            }
        } else {
            Bytes {
                ptr,
                len,
                data: AtomicPtr::new(ptr as *mut _),
                vtable: &PROMOTABLE_ODD_VTABLE,
            }
        }
    }
}

impl From<String> for Bytes {
    fn from(s: String) -> Bytes {
        Bytes::from(s.into_bytes())
    }
}

// ===== impl Vtable =====

impl fmt::Debug for Vtable {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Vtable")
            .field("clone", &(self.clone as *const ()))
            .field("drop", &(self.drop as *const ()))
            .finish()
    }
}

// ===== impl StaticVtable =====

const STATIC_VTABLE: Vtable = Vtable {
    clone: static_clone,
    drop: static_drop,
};

unsafe fn static_clone(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
    let slice = slice::from_raw_parts(ptr, len);
    Bytes::from_static(slice)
}

unsafe fn static_drop(_: &mut AtomicPtr<()>, _: *const u8, _: usize) {
    // nothing to drop for &'static [u8]
}

// ===== impl PromotableVtable =====

static PROMOTABLE_EVEN_VTABLE: Vtable = Vtable {
    clone: promotable_even_clone,
    drop: promotable_even_drop,
};

static PROMOTABLE_ODD_VTABLE: Vtable = Vtable {
    clone: promotable_odd_clone,
    drop: promotable_odd_drop,
};

unsafe fn promotable_even_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
    let shared = data.load(Ordering::Acquire);
    let kind = shared as usize & KIND_MASK;

    if kind == KIND_ARC {
        shallow_clone_arc(shared as _, ptr, len)
    } else {
        debug_assert_eq!(kind, KIND_VEC);
        let buf = (shared as usize & !KIND_MASK) as *mut u8;
        shallow_clone_vec(data, shared, buf, ptr, len)
    }
}

unsafe fn promotable_even_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) {
    data.with_mut(|shared| {
        let shared = *shared;
        let kind = shared as usize & KIND_MASK;

        if kind == KIND_ARC {
            release_shared(shared as *mut Shared);
        } else {
            debug_assert_eq!(kind, KIND_VEC);
            let buf = (shared as usize & !KIND_MASK) as *mut u8;
            drop(rebuild_boxed_slice(buf, ptr, len));
        }
    });
}

unsafe fn promotable_odd_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
    let shared = data.load(Ordering::Acquire);
    let kind = shared as usize & KIND_MASK;

    if kind == KIND_ARC {
        shallow_clone_arc(shared as _, ptr, len)
    } else {
        debug_assert_eq!(kind, KIND_VEC);
        shallow_clone_vec(data, shared, shared as *mut u8, ptr, len)
    }
}

unsafe fn promotable_odd_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) {
    data.with_mut(|shared| {
        let shared = *shared;
        let kind = shared as usize & KIND_MASK;

        if kind == KIND_ARC {
            release_shared(shared as *mut Shared);
        } else {
            debug_assert_eq!(kind, KIND_VEC);

            drop(rebuild_boxed_slice(shared as *mut u8, ptr, len));
        }
    });
}

unsafe fn rebuild_boxed_slice(buf: *mut u8, offset: *const u8, len: usize) -> Box<[u8]> {
    let cap = (offset as usize - buf as usize) + len;
    Box::from_raw(slice::from_raw_parts_mut(buf, cap))
}

// ===== impl SharedVtable =====

struct Shared {
    // holds vec for drop, but otherwise doesnt access it
    _vec: Vec<u8>,
    ref_cnt: AtomicUsize,
}

// Assert that the alignment of `Shared` is divisible by 2.
// This is a necessary invariant since we depend on allocating `Shared` a
// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
// This flag is set when the LSB is 0.
const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.

static SHARED_VTABLE: Vtable = Vtable {
    clone: shared_clone,
    drop: shared_drop,
};

const KIND_ARC: usize = 0b0;
const KIND_VEC: usize = 0b1;
const KIND_MASK: usize = 0b1;

unsafe fn shared_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
    let shared = data.load(Ordering::Relaxed);
    shallow_clone_arc(shared as _, ptr, len)
}

unsafe fn shared_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
    data.with_mut(|shared| {
        release_shared(*shared as *mut Shared);
    });
}

unsafe fn shallow_clone_arc(shared: *mut Shared, ptr: *const u8, len: usize) -> Bytes {
    let old_size = (*shared).ref_cnt.fetch_add(1, Ordering::Relaxed);

    if old_size > usize::MAX >> 1 {
        crate::abort();
    }

    Bytes {
        ptr,
        len,
        data: AtomicPtr::new(shared as _),
        vtable: &SHARED_VTABLE,
    }
}

#[cold]
unsafe fn shallow_clone_vec(
    atom: &AtomicPtr<()>,
    ptr: *const (),
    buf: *mut u8,
    offset: *const u8,
    len: usize,
) -> Bytes {
    // If  the buffer is still tracked in a `Vec<u8>`. It is time to
    // promote the vec to an `Arc`. This could potentially be called
    // concurrently, so some care must be taken.

    // First, allocate a new `Shared` instance containing the
    // `Vec` fields. It's important to note that `ptr`, `len`,
    // and `cap` cannot be mutated without having `&mut self`.
    // This means that these fields will not be concurrently
    // updated and since the buffer hasn't been promoted to an
    // `Arc`, those three fields still are the components of the
    // vector.
    let vec = rebuild_boxed_slice(buf, offset, len).into_vec();
    let shared = Box::new(Shared {
        _vec: vec,
        // Initialize refcount to 2. One for this reference, and one
        // for the new clone that will be returned from
        // `shallow_clone`.
        ref_cnt: AtomicUsize::new(2),
    });

    let shared = Box::into_raw(shared);

    // The pointer should be aligned, so this assert should
    // always succeed.
    debug_assert!(
        0 == (shared as usize & KIND_MASK),
        "internal: Box<Shared> should have an aligned pointer",
    );

    // Try compare & swapping the pointer into the `arc` field.
    // `Release` is used synchronize with other threads that
    // will load the `arc` field.
    //
    // If the `compare_and_swap` fails, then the thread lost the
    // race to promote the buffer to shared. The `Acquire`
    // ordering will synchronize with the `compare_and_swap`
    // that happened in the other thread and the `Shared`
    // pointed to by `actual` will be visible.
    let actual = atom.compare_and_swap(ptr as _, shared as _, Ordering::AcqRel);

    if actual as usize == ptr as usize {
        // The upgrade was successful, the new handle can be
        // returned.
        return Bytes {
            ptr: offset,
            len,
            data: AtomicPtr::new(shared as _),
            vtable: &SHARED_VTABLE,
        };
    }

    // The upgrade failed, a concurrent clone happened. Release
    // the allocation that was made in this thread, it will not
    // be needed.
    let shared = Box::from_raw(shared);
    mem::forget(*shared);

    // Buffer already promoted to shared storage, so increment ref
    // count.
    shallow_clone_arc(actual as _, offset, len)
}

unsafe fn release_shared(ptr: *mut Shared) {
    // `Shared` storage... follow the drop steps from Arc.
    if (*ptr).ref_cnt.fetch_sub(1, Ordering::Release) != 1 {
        return;
    }

    // This fence is needed to prevent reordering of use of the data and
    // deletion of the data.  Because it is marked `Release`, the decreasing
    // of the reference count synchronizes with this `Acquire` fence. This
    // means that use of the data happens before decreasing the reference
    // count, which happens before this fence, which happens before the
    // deletion of the data.
    //
    // As explained in the [Boost documentation][1],
    //
    // > It is important to enforce any possible access to the object in one
    // > thread (through an existing reference) to *happen before* deleting
    // > the object in a different thread. This is achieved by a "release"
    // > operation after dropping a reference (any access to the object
    // > through this reference must obviously happened before), and an
    // > "acquire" operation before deleting the object.
    //
    // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
    atomic::fence(Ordering::Acquire);

    // Drop the data
    Box::from_raw(ptr);
}

// compile-fails

/// ```compile_fail
/// use bytes::Bytes;
/// #[deny(unused_must_use)]
/// {
///     let mut b1 = Bytes::from("hello world");
///     b1.split_to(6);
/// }
/// ```
fn _split_to_must_use() {}

/// ```compile_fail
/// use bytes::Bytes;
/// #[deny(unused_must_use)]
/// {
///     let mut b1 = Bytes::from("hello world");
///     b1.split_off(6);
/// }
/// ```
fn _split_off_must_use() {}

// fuzz tests
#[cfg(all(test, loom))]
mod fuzz {
    use loom::sync::Arc;
    use loom::thread;

    use super::Bytes;
    #[test]
    fn bytes_cloning_vec() {
        loom::model(|| {
            let a = Bytes::from(b"abcdefgh".to_vec());
            let addr = a.as_ptr() as usize;

            // test the Bytes::clone is Sync by putting it in an Arc
            let a1 = Arc::new(a);
            let a2 = a1.clone();

            let t1 = thread::spawn(move || {
                let b: Bytes = (*a1).clone();
                assert_eq!(b.as_ptr() as usize, addr);
            });

            let t2 = thread::spawn(move || {
                let b: Bytes = (*a2).clone();
                assert_eq!(b.as_ptr() as usize, addr);
            });

            t1.join().unwrap();
            t2.join().unwrap();
        });
    }
}