Files
addr2line
adler
anyhow
az
backtrace
bitflags
bstr
byteorder
bytes
cfg_if
csv
csv_core
either
error_chain
ffi_support
foreign_types
foreign_types_shared
getrandom
gimli
gmp_mpfr_sys
hashbrown
ieee754
indexmap
itertools
itoa
lazy_static
libc
log
matrixmultiply
memchr
miniz_oxide
ndarray
ndarray_stats
noisy_float
num
num_bigint
num_complex
num_integer
num_iter
num_rational
num_traits
object
once_cell
openssl
openssl_sys
ppv_lite86
probability
proc_macro2
prost
prost_derive
quote
rand
rand_chacha
rand_core
random
rawpointer
regex_automata
rug
rustc_demangle
ryu
serde
serde_derive
serde_json
smartnoise_ffi
smartnoise_runtime
smartnoise_validator
special
statrs
syn
unicode_xid
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use super::RankTieBreaker;

/// The `OrderStatistics` trait provides statistical utilities
/// having to do with ordering. All the algorithms are in-place thus requiring
/// a mutable borrow.
pub trait OrderStatistics<T> {
    /// Returns the order statistic `(order 1..N)` from the data
    ///
    /// # Remarks
    ///
    /// No sorting is assumed. Order must be one-based (between `1` and `N`
    /// inclusive)
    /// Returns `f64::NAN` if order is outside the viable range or data is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::OrderStatistics;
    ///
    /// let mut x = [];
    /// assert!(x.order_statistic(1).is_nan());
    ///
    /// let mut y = [0.0, 3.0, -2.0];
    /// assert!(y.order_statistic(0).is_nan());
    /// assert!(y.order_statistic(4).is_nan());
    /// assert_eq!(y.order_statistic(2), 0.0);
    /// assert!(y != [0.0, 3.0, -2.0]);
    /// ```
    fn order_statistic(&mut self, order: usize) -> T;

    /// Returns the median value from the data
    ///
    /// # Remarks
    ///
    /// Returns `f64::NAN` if data is empty
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::OrderStatistics;
    ///
    /// let mut x = [];
    /// assert!(x.median().is_nan());
    ///
    /// let mut y = [0.0, 3.0, -2.0];
    /// assert_eq!(y.median(), 0.0);
    /// assert!(y != [0.0, 3.0, -2.0]);
    fn median(&mut self) -> T;

    /// Estimates the tau-th quantile from the data. The tau-th quantile
    /// is the data value where the cumulative distribution function crosses
    /// tau.
    ///
    /// # Remarks
    ///
    /// No sorting is assumed. Tau must be between `0` and `1` inclusive.
    /// Returns `f64::NAN` if data is empty or tau is outside the inclusive
    /// range.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::OrderStatistics;
    ///
    /// let mut x = [];
    /// assert!(x.quantile(0.5).is_nan());
    ///
    /// let mut y = [0.0, 3.0, -2.0];
    /// assert!(y.quantile(-1.0).is_nan());
    /// assert!(y.quantile(2.0).is_nan());
    /// assert_eq!(y.quantile(0.5), 0.0);
    /// assert!(y != [0.0, 3.0, -2.0]);
    /// ```
    fn quantile(&mut self, tau: f64) -> T;

    /// Estimates the p-Percentile value from the data.
    ///
    /// # Remarks
    ///
    /// Use quantile for non-integer percentiles. `p` must be between `0` and
    /// `100` inclusive.
    /// Returns `f64::NAN` if data is empty or `p` is outside the inclusive
    /// range.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::OrderStatistics;
    ///
    /// let mut x = [];
    /// assert!(x.percentile(0).is_nan());
    ///
    /// let mut y = [1.0, 5.0, 3.0, 4.0, 10.0, 9.0, 6.0, 7.0, 8.0, 2.0];
    /// assert_eq!(y.percentile(0), 1.0);
    /// assert_eq!(y.percentile(50), 5.5);
    /// assert_eq!(y.percentile(100), 10.0);
    /// assert!(y.percentile(105).is_nan());
    /// assert!(y != [1.0, 5.0, 3.0, 4.0, 10.0, 9.0, 6.0, 7.0, 8.0, 2.0]);
    /// ```
    fn percentile(&mut self, p: usize) -> T;

    /// Estimates the first quartile value from the data.
    ///
    /// # Remarks
    ///
    /// Returns `f64::NAN` if data is empty
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use]
    /// extern crate statrs;
    ///
    /// use statrs::statistics::OrderStatistics;
    ///
    /// # fn main() {
    /// let mut x = [];
    /// assert!(x.lower_quartile().is_nan());
    ///
    /// let mut y = [2.0, 1.0, 3.0, 4.0];
    /// assert_almost_eq!(y.lower_quartile(), 1.416666666666666, 1e-15);
    /// assert!(y != [2.0, 1.0, 3.0, 4.0]);
    /// # }
    /// ```
    fn lower_quartile(&mut self) -> T;

    /// Estimates the third quartile value from the data.
    ///
    /// # Remarks
    ///
    /// Returns `f64::NAN` if data is empty
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use]
    /// extern crate statrs;
    ///
    /// use statrs::statistics::OrderStatistics;
    ///
    /// # fn main() {
    /// let mut x = [];
    /// assert!(x.upper_quartile().is_nan());
    ///
    /// let mut y = [2.0, 1.0, 3.0, 4.0];
    /// assert_almost_eq!(y.upper_quartile(), 3.5833333333333333, 1e-15);
    /// assert!(y != [2.0, 1.0, 3.0, 4.0]);
    /// # }
    /// ```
    fn upper_quartile(&mut self) -> T;

    /// Estimates the inter-quartile range from the data.
    ///
    /// # Remarks
    ///
    /// Returns `f64::NAN` if data is empty
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use]
    /// extern crate statrs;
    ///
    /// use statrs::statistics::OrderStatistics;
    ///
    /// # fn main() {
    /// let mut x = [];
    /// assert!(x.interquartile_range().is_nan());
    ///
    /// let mut y = [2.0, 1.0, 3.0, 4.0];
    /// assert_almost_eq!(y.interquartile_range(), 2.166666666666667, 1e-15);
    /// assert!(y != [2.0, 1.0, 3.0, 4.0]);
    /// # }
    /// ```
    fn interquartile_range(&mut self) -> T;

    /// Evaluates the rank of each entry of the data.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::{OrderStatistics, RankTieBreaker};
    ///
    /// let mut x = [];
    /// assert_eq!(x.ranks(RankTieBreaker::Average).len(), 0);
    ///
    /// let y = [1.0, 3.0, 2.0, 2.0];
    /// assert_eq!((&mut y.clone()).ranks(RankTieBreaker::Average), [1.0, 4.0,
    /// 2.5, 2.5]);
    /// assert_eq!((&mut y.clone()).ranks(RankTieBreaker::Min), [1.0, 4.0, 2.0,
    /// 2.0]);
    /// ```
    fn ranks(&mut self, tie_breaker: RankTieBreaker) -> Vec<T>;
}